Abstract

Recently, microbiologists have focused on characterizing the probiotic role of skin bacteria for amphibians threatened by the fungal disease chytridiomycosis. However, the specific characteristics of microbial diversity required to maintain health or trigger disease are still not well understood in natural populations. We hypothesized that seasonal and developmental transitions affecting susceptibility to chytridiomycosis could also alter the stability of microbial assemblages. To test our hypothesis, we examined patterns of skin bacterial diversity in two species of declining amphibians (Lithobates yavapaiensis and Eleutherodactylus coqui) affected by the pathogenic fungus Batrachochytrium dendrobatidis (Bd). We focused on two important transitions that affect Bd susceptibility: ontogenetic (from juvenile to adult) shifts in E. coqui and seasonal (from summer to winter) shifts in L. yavapaiensis. We used a combination of community-fingerprinting analyses and 16S rRNA amplicon sequencing to quantify changes in bacterial diversity and assemblage composition between seasons and developmental stages, and to investigate the relationship between bacterial diversity and pathogen load. We found that winter-sampled frogs and juveniles, two states associated with increased Bd susceptibility, exhibited higher diversity compared with summer-sampled frogs and adult individuals. Our findings also revealed that hosts harbouring higher bacterial diversity carried lower Bd infections, providing support for the protective role of bacterial communities. Ongoing work to understand skin microbiome resilience after pathogen disturbance has the potential to identify key taxa involved in disease resistance.

Highlights

  • Microbial communities play an essential role in the maintenance of overall homoeostasis by modulating host immune responses, metabolism and physiological processes [1,2,3]

  • To investigate associations between infection dynamics and skin bacterial diversity, we focused on two important transitions that affect Bd susceptibility: ontogenetic shifts in E. coqui and seasonal shifts in L. yavapaiensis [22,31]

  • We found that Bd-infected L. yavapaiensis harboured a microbial community significantly more diverse and with more even relative abundances than Bd-uninfected frogs

Read more

Summary

Introduction

Microbial communities play an essential role in the maintenance of overall homoeostasis by modulating host immune responses, metabolism and physiological processes [1,2,3]. Any disturbance caused by, for example, the application of antibiotics, changes in diet, immune suppression or pathogen colonization can cause shifts in the relative abundance of resident microbial taxa, a condition known as dysbiosis [4]. Others rely on abiotic and biotic factors to alleviate damage, such as increasing body temperature to reduce pathogen burden [16,17] or forming symbiotic associations with bacteria that indirectly provide resistance [18,19]. These factors are not mutually exclusive and may interact to determine disease outcome

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call