Abstract

A multilayer thermodynamic model is used to simulate sea ice growth for 12 years between 1958 and 1986 in the vicinity of the Australian station Mawson on the coast of East Antarctica. The atmospheric forcing data for the model are derived from radiosonde profiles and from surface measurements. Global radiation data are available for 4 years, and we use these measurements for comparison with the results of a Zillman‐type model for global radiation. Combining the thermodynamic model with sea ice thickness measurements for 12 years, we solve the energy balance equation for the oceanic heat flux. The oceanic heat flux is not constant but changes with time within the year and from year to year. The oceanic heat flux averages 7.9 W/m2, and the yearly means vary between 5 and 12 W/m2. Seasonal values of the oceanic heat flux range from 0 to 18 W/m2. From the yearly averaged values a decadal trend is evident: During the first years that were analyzed the yearly average lies well above 10 W/m2; then in the mid‐1970s a decrease to 9 W/m2 occurs, while for all later years the values are ∼6–8 W/m2. In general, the oceanic heat flux increases from the start of the fast ice formation season in early April until it breaks out in December or January. To compare the calculated oceanic heat fluxes for different years, we divide the total ice season into three characteristic time regimes of the sea ice growth and calculate the averaged oceanic heat fluxes for each regime. For the first regime (through August) the mean flux is 2.7 W/m2, for the middle regime (September) it is 8.4 W/m2, and for the final regime (October–January) it is 17 W/m2. We discuss the results of our model calculations in conjunction with current meter observations, which give evidence of seasonally varying intrusions of relatively warm Circumpolar Deep Water into Prydz Bay. Comparison of passive microwave data of sea ice extent and concentration (from the scanning multichannel microwave radiometer sensor) with the model results reveals a correlation between the magnitude of the oceanic heat flux and local features such as polynyas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.