Abstract

AbstractClimate change is rapidly affecting the seasonal timing of spatial demographic processes. Consequently, resource managers require information from models that simultaneously measure seasonal, interannual, and spatial variation. We present a spatio-temporal model that includes annual, seasonal, and spatial variation in density and then highlight two important uses: (i) standardizing data that are spatially unbalanced within multiple seasons and (ii) identifying interannual changes in seasonal timing (phenology) of population processes. We demonstrate these uses with two contrasting case studies: three bottom trawl surveys for yellowtail flounder (Limanda ferruginea) in the Northwest Atlantic Ocean from 1985 to 2017 and pelagic tows for copepodite stage 3+ copepod (Calanus glacialis/marshallae) densities in the eastern Bering Sea from 1993 to 2016. The yellowtail analysis illustrates how data from multiple surveys can be used to infer density hot spots in an area that is not sampled one or more surveys. The copepod analysis assimilates seasonally unbalanced samples to estimate an annual index of the seasonal timing of copepod abundance and identifies a positive correlation between this index and cold-pool extent. We conclude by discussing additional potential uses of seasonal spatio-temporal models and emphasize their ability to identify climate-driven shifts in the seasonal timing of fish movement and ecosystem productivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.