Abstract

We evaluated shortgrass steppe energy budgets based on the Bowen Ratio Energy Balance method for three different grazing intensity treatments at the Central Plains Experimental Range Long-Term Ecological Research (CPER-LTER) site. We tested the correlations between aboveground biomass and surface energy fluxes for three different precipitation years based on continuously measured 20 min interval data.Grazing has a potential impact on energy partitioning under conditions of higher water availability, but not during dry conditions. Our study confirms that precipitation, not grazing treatment, explains the majority of variation in aboveground biomass at the CPER-LTER site. In addition, we are suggesting effective temperature, not air temperature, as a superior metric to evaluate surface heat change. Effective temperature takes into account humidity as well as air temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.