Abstract

A 5-year time-series study of primary production and euphotic-zone particle export in the subtropical North Pacific Ocean near Hawaii (Sta. ALOHA, 22°45′N, 158°W) with measurements collected at approximately monthly intervals has revealed significant variability in both ecosystem processes. Depth-integrated (0–200 m) primary production averaged 463 mg C m −2 day −1 ( s = 156, n = 54) or 14.1 mol C m −2 year −1. This mean value is greater than estimates for the North Pacific Ocean gyre made prior to 1984, but conforms to data obtained since the advent of trace metal-clean techniques. Daily rates of primary productivity at Sta. ALOHA exhibited interannual variability including a nearly 3-year sustained increase during the period 1990–1992 that coincided with a prolonged El Nifio-Southern Oscillation (ENSO) event. Export production, defined as the particulate carbon (PC) flux measured at the 150 m reference depth, also varied considerably during the initial 5 years of the ongoing field experiment. The PC flux averaged 29 mg C m −2 day −1 ( s = 11, n = 43) or 0.88 mol Cm −2 year −1. A 5-fold variation between the minimum and maximum fluxes, measured in any given year, was observed. During the first 3 years of this program (1989–1991), a pattern was resolved that included two major export events per annum one centered in late winter and the other in late summer. After 1991, export production exhibited a systematic decrease with time during the prolonged ENSO event. When expressed as a percentage of the contemporaneous primary production, PC export ranged from 2 to 16.9%, with a 5-year mean of 6.7% ( s = 3.3, n = 40). Contrary to existing empirical models, contemporaneous primary production and PC flux were poorly correlated, and during the ENSO period they exhibited a significant inverse correlation. This unexpected decoupling of particle production and flux has numerous implications for oceanic biogeochemical cycles and for the response of the ocean to environmental perturbations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call