Abstract

BackgroundSub-lakes are important for the maintenance of the ecosystem integrity of Lake Poyang, and zooplankton play an important role in its substance and energy flow.MethodsA seasonal investigation of zooplankton was conducted in spring (April), summer (July), autumn (October) and winter (January of the following year) from 2012 to 2016 in a sub-lake of Lake Poyang. The aim of the present study was to understand the seasonal dynamics and interannual variation of zooplankton communities and their relationship to environmental factors.ResultsA total of 115 species were identified in all samples in the four years, which comprised of 87 Rotifera, 13 Cladocera and 15 Copepoda. Rotifera was the dominant group in terms of quantity, and its species richness and abundance were significantly higher when compared to Cladocera and Copepoda (P < 0.05), while Cladocera dominated in terms of biomass. The species richness of Rotifera exhibited a significant seasonal difference (P < 0.05). Both the density and biomass of zooplankton revealed significant seasonal differences (P < 0.05). In general, the density and biomass of zooplankton were higher in summer and autumn, when compared to winter and spring. Biodiversity indices were dramatically lower in spring than in the other seasons. The non-metric multidimensional scaling (NMDS) analysis suggested that these zooplankton communities can be divided into three groups: spring community, summer-autumn community, and winter community. The seasonal succession of zooplankton communities did not have interannual reproducibility. In high water level years, the dominant species of zooplankton (Cladocerans and Copepods) in the wet season had a lower density, and the result in low water level years was exactly the opposite. The redundancy analysis revealed that water temperature (WT), conductivity, pH and dissolved oxygen (DO) had significant effects on the zooplankton community.ConclusionsThe community structure of zooplankton has a significant seasonal pattern, but has no interannual repeatability. In high water level years, the dominant species of zooplankton (Cladocerans and Copepods) in the wet season had a lower density, and the result in low water level years was exactly the opposite. The density, biomass and diversity indices of zooplankton were significantly different in different seasons. The present study was helpful in the further understanding of the ecosystem stability of lakes connected with rivers, providing scientific guidance for the protection of lake wetlands.

Highlights

  • Lake Poyang is the largest freshwater lake in China

  • The density of three species (B. longirostris, Copepod nauplii and M. varicans) of zooplankton that were dominant species in four years were separately analyzed, and it was found that the density changes had similar patterns (Fig. 8)

  • The non-metric multidimensional scaling (NMDS) analysis suggested that seasonal variation was more significant than interannual in the zooplankton community structure, and that this could be divided into three community groups associated with distinct indicator species (Fig. 6, Table A2)

Read more

Summary

Introduction

Lake Poyang is the largest freshwater lake in China. It is a connected lake, in which water levels fluctuate widely during different seasons (Wu, 1994). Sub-lakes are of significant ecological value due to their huge vegetation biomass (Huang & Guo, 2007; Li & Liu, 2001), high biodiversity (Wu, 1994; Ge et al, 2010), fish nurseries and reproduction sites in the high water period (Zhang & Wang, 1982), and ideal habitats provided for wintering birds (Qi et al, 2011; Hu, Ge & Liu, 2014) All these characteristics play important and unique roles in maintaining the biological integrity and species diversity of the Lake Poyang wetland ecosystem.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call