Abstract

A possible test for different models explaining the seasonal variation in geomagnetic activity is the diurnal variation. We computed diurnal variations both in the occurrence of large AE (auroral electrojet) indices and in the AO index. (AO is the auroral electrojet index that provides a measure of the equivalent zonal current.) Both methods show a similar diurnal variation in geomagnetic activity with a deep minimum around (3–7) UT (universal time) in winter and a shallower minimum near 5–9 UT in equinoctial months. The observed UT variation is consistent with the results of other scientists, but it is different from that expected from the Russell–McPherron mechanism proposed to explain the seasonal variation. It is suggested that the possible cause for the diurnal and seasonal variations may be variations in nightside ionospheric conductivity. Recent experimental results show an important role for ionospheric conductivity in particle acceleration and geomagnetic disturbance generation. They also show that low ionospheric conductivity is favorable to the generation of auroral and geomagnetic activity. The conductivity in conjugate nightside auroral zones (where substorm generation takes place) is minimum at equinoxes, when both auroral zones are in darkness. The low ionospheric conductivity at equinoxes may be a possible cause for the seasonal variation in the geomagnetic activity with maxima in equinoctial months. The diurnal variation in geomagnetic activity can be produced by the UT variation in the nightside ionospheric conductivity, which in winter and at equinoxes has a maximum around 4–5 UT that may lead to a minimum in geomagnetic activity at this time. We calculated the correlation patterns for the AE index versus solar-wind parameters inside and outside the (2–7) UT sector related to the minimum in geomagnetic activity. The correlation patterns appear different in these two sectors indeed, which is well consistent with the UT variation in geomagnetic activity. It also shows that it is possible to improve significantly the reliability of the Space Weather forecast by taking into account the dependence of geomagnetic activity not only on solar-wind parameters but also on UT and season. Our test shows that a simple account for the dependence of geomagnetic activity on UT can improve the reliability of the Space Weather forecast by at least 50% in the 2–7 UT sector in winter and equinoctial months. PACS No.: 91.25Le

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call