Abstract

AbstractA mountain air chemistry observatory has been operational on the summit of Whistler Mountain in British Columbia, Canada, since 2002. A 1-yr dataset of condensation nuclei (CN) concentration from this site has been analyzed along with corresponding meteorological data to assess the frequency and patterns of influence from the planetary boundary layer (PBL). Characterization of air masses sampled from the site as either PBL influenced or representative of the free troposphere (FT) is important to subsequent analysis of the chemistry data. Median CN concentrations and seasonal trends were found to be comparable to other midlatitude mountain sites. Monthly median number concentrations ranged from 120 cm−3in January to 1601 cm−3in July. Using well-defined diurnal cycles in CN concentration as an indicator of air arriving from nearby valleys, PBL influence was found to occur on a majority of days during spring and summer and less frequently in late autumn and winter. Days with PBL influence were usually associated with synoptic-scale weather patterns that were conducive to convective mixing processes. Although more common in the warm season, vertical mixing capable of transporting valley air to the mountaintop also occurred in February during a period of high pressure aloft. In contrast, an August case study indicated that the more stable character of marine air masses can at times keep the PBL below the summit on summer days. Considerable variability in the synoptic-scale weather conditions at Whistler means that careful analysis of available datasets must be made to discriminate FT from PBL periods at the observatory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call