Abstract
Our study documents individual swimming behavior of Daphnia pulicaria over a yearly cycle in a temperate lake. We collected D. pulicaria, a common freshwater zooplankton, from Lake Mendota on 10 dates between July 1994 and June 1995 from two depths, 2 m and 10 m. The Daphnia were rushed to the laboratory and video-taped as they swam in lake water under lake-ambient temperature and light conditions. Five-second swimming tracks of individual Daphnia were filmed and digitized using a motion analysis system. We measured average turning angle, swimming speed and sinking rate for each track. D. pulicaria swimming behavior varied over the annual cycle. We found significant differences in turning angle between depths and among months. Sinking rate and swimming speed were significantly different among months but not depths. Sinking rate and swimming speed were not significantly correlated with water temperature. Our results were contrary to Stokes' Law predictions, in that D. pulicaria had the slowest sinking speed in June, not in the winter when water temperatures were lowest and viscosity was highest. Body length was significantly correlated with all three swimming variables. We also studied swimming behavior in clonal populations of D. pulicaria in different concentrations of the alga, Chlamydomonas reinhardtii. D. pulicaria did not change swimming speed, turning angle or sinking rate over a range of food concentrations. Finally, swimming behavior in a D. pulicaria clone, tested at two temperatures in the laboratory, confirmed the results from our seasonal study; Daphnia did not sink as predicted by changes in viscosity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.