Abstract

Seasonal variation of arbuscular mycorrhizal fungi (AMF) in roots of the high salt marsh plant Spartina patens, the diversity of nitrogen-fixing bacteria in the rhizosphere and plant growth performance was studied at key stages of the growing season coinciding with major plant phenological stages, i.e., vegetative growth, reproduction and senescence. AMF colonization was highest during vegetative growth, with values declining during the growing season to the same level seen at plant dormancy. AMF colonization was reduced at lower depths in the sediments where anoxic conditions were observed and in plants treated with the systemic fungicide Benomyl. Only small changes in diversity of nitrogen-fixing bacteria in general and more specifically of those belonging to the e-subdivision of Proteobacteria were detected during the season or between treatments by PCR-RFLP of nifH gene fragments with DNA as template for amplification; however, greater seasonal changes were displayed when cDNA was used as template for amplification as a proxy for gene expression and thus active bacteria. DGGE analyses of nifH gene fragments representing nitrogen-fixing bacteria of the e-subdivision of Proteobacteria using both using DNA and cDNA as template showed highly diverse profiles that changed during the season and in response to treatment. Seasonal changes were observed for a suite of plant growth attributes and differences were observed between treatments, with higher values generally obtained on non-treated plants compared to Benomyl-treated plants. These differences were most pronounced during vegetative growth; however, differences between non-treated and Benomyl-treated plants were reduced seasonally and disappeared by the onset of senescence. This study demonstrates seasonal changes in AMF colonization on S. patens and in the community structure of nitrogen-fixing members of the e-subdivision of Proteobacteria in the plant root zone. Plant growth performance changed seasonally with some effects of Benomyl-treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call