Abstract

How easy is it to improve the catalytic power of an enzyme? To address this question, the gene encoding a sluggish mutant triose-phosphate isomerase (D-glyceraldehyde-3-phosphate ketol-isomerase, EC 5.3.1.1) has been subjected to random mutagenesis over its whole length by using "spiked" oligonucleotide primers. Transformation of an isomerase-minus strain of Escherichia coli was followed by selection of those colonies harboring an enzyme of higher catalytic potency. Six amino acid changes in the Glu-165----Asp mutant of triosephosphate isomerase improve the specific catalytic activity of this enzyme (from 1.3-fold to 19-fold). The suppressor sites are scattered across the sequence (at positions 10, 96, 97, 167, and 233), but each of them is very close to the active site. These experiments show both that there are relatively few single amino acid changes that increase the catalytic potency of this enzyme and that all of these improvements derive from alterations that are in, or very close to, the active site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.