Abstract
Between 2004 and 2018, NASA’s rover Opportunity found huge numbers of small, hematite-rich spherules (commonly called blueberries) on the Meridiani Planum of Mars. The standard oxide composition distributions of blueberries have remained poorly constrained, with previous published analyses leaving hematite content somewhere in the broad range of 24–100 wt%. A searching mass-balance analysis is introduced and applied to constrain possible standard oxide composition distributions of blueberries consistent with the non-detection of silicates in blueberries by Opportunity’s instruments. This analysis found three groups of complete solution sets among the mass-balance ions consistent with the non-detection of silicates; although, a simple extension of the analysis indicates that one larger space of solutions incorporates all three groups of solutions. Enforcing consistency with the non-detection of silicates in blueberries constrains the hematite content in most of blueberry samples to between 79.5 and 99.85 wt%. A feature of the largest group of complete solution sets is that five oxides/elements, MgO, P2O5, Na2O, SO3, and Cl, collectively have a summed weight percentage that averages close to 6 wt%, while the weight percentage of nickel is close to 0.3 wt% in all solutions. Searches over multidimensional spaces of filtering composition distributions of basaltic and dusty soils were a methodological advance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.