Abstract

In the last ten years, combinations of state-of-the-art gas-phase spectroscopies and quantum chemistry calculations have suggested several intuitive trends in the structure of small polypeptides that may not hold true. For example, the preference for the cis form of the peptide bond and multiple protonated sites was proposed by comparing experimental spectra with low-energy minima obtained from limited structural sampling using various density functional theory methods. For understanding the structures of polypeptides, extensive sampling of their configurational space with high-accuracy computational methods is required. In this work, we demonstrated the use of deep-learning neural network potential (DL-NNP) to assist in exploring the structure and energy landscape of di-, tri-, and tetra-glycine with the accuracy of high-level quantum chemistry methods, and low-energy conformers of small polypeptides can be efficiently located. We hope that the structures of these polypeptides we found and our preliminary analysis will stimulate further experimental investigations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.