Abstract

We consider two well-known related problems: Longest Repeated Substring (LRS) and Longest Repeated Reversed Substring (LRRS). Their streaming versions cannot be solved exactly; we show that only approximate solutions by Monte Carlo algorithms are possible, and prove a lower bound on consumed memory. For both problems, we present purely linear-time Monte Carlo algorithms working in O(E + n/E) space, where E is the additive approximation error. Within the same space bounds, we then present nearly real-time solutions, which require O(log n) time per symbol and O(n + n/E log n) time overall. The working space exactly matches the lower bound whenever E=O(n^{0.5}) and the size of the alphabet is Omega(n^{0.01}).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.