Abstract

The relation between parity-check matrices of quasi-cyclic (QC) low-density parity-check (LDPC) codes and biadjacency matrices of bipartite graphs supports searching for powerful LDPC block codes. Using the principle of tailbiting, compact representations of bipartite graphs based on convolutional codes can be found. Bounds on the girth and the minimum distance of LDPC block codes constructed in such a way are discussed. Algorithms for searching iteratively for LDPC block codes with large girth and for determining their minimum distance are presented. Constructions based on all-one matrices, Steiner Triple Systems, and QC block codes are introduced. Finally, new QC regular LDPC block codes with girth up to 24 are given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.