Abstract
The Hyades constitute a homogeneous sample of stars ideal for investigating the dependence of planet formation on the mass of the central star. Due to their youth, Hyades members are much more chromospherically active than stars traditionally surveyed for planets using high precision radial velocity (RV) techniques. Therefore, we have conducted a detailed investigation of whether magnetic activity of our Hyades target stars will interfere with our ability to make precise RV searches for substellar companions. We measure chromospheric activity (which we take as a proxy for magnetic activity) by computing the equivalent of the R'HK activity index from the Ca II K line. is not constant in the Hyades: we confirm that it decreases with increasing temperature in the F stars, and also find it decreases for stars cooler than mid-K. We examine correlations between simultaneously measured R'HK and RV using both a classical statistical test and a Bayesian odds ratio test. We find that there is a significant correlation between R'HK and the RV in only 5 of the 82 stars in this sample. Thus, simple Rprime HK-RV correlations will generally not be effective in correcting the measured RV values for the effects of magnetic activity in the Hyades. We argue that this implies long timescale activity variations (of order a few years; i.e., magnetic cycles or growth and decay of plage regions) will not significantly hinder our search for planets in the Hyades if the stars are closely monitored for chromospheric activity. The trends in the RV scatter (sigma'_v) with , vsini, and P_rot for our stars is generally consistent with those found in field stars in the Lick planet search data, with the notable exception of a shallower dependence of sigma'_v on for F stars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.