Abstract

AbstractRandomised algorithms traditionally make stochastic decisions based on the result of sampling from a uniform probability distribution, such as the toss of a fair coin. In this paper, we relax this constraint, and investigate the potential benefits of allowing randomised algorithms to use non-uniform probability distributions. We show that the choice of probability distribution influences the non-functional properties of such algorithms, providing an avenue of optimisation to satisfy non-functional requirements. We use Multi-Objective Optimisation techniques in conjunction with Genetic Algorithms to investigate the possibility of trading-off non-functional properties, by searching the space of probability distributions. Using a randomised self-stabilising token circulation algorithm as a case study, we show that it is possible to find solutions that result in Pareto-optimal trade-offs between non-functional properties, such as self-stabilisation time, service time, and fairness.KeywordsService TimeGenetic ProgramPareto FrontLeader ElectionDiscrete Time Markov ChainThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.