Abstract
We report on initial results from a campaign to obtain optical imaging of a sample of Ultra Compact High Velocity Clouds (UCHVCs) discovered by the ALFALFA neutral hydrogen (HI) survey. UCHVCs are sources with velocities and sizes consistent with their being low-mass dwarf galaxies in the Local Volume, but without optical counterparts in existing catalogs. We are using the WIYN 3.5-m telescope and pODI camera to image these objects and search for an associated stellar population. In this paper, we present our observational strategy and method for searching for resolved stellar counterparts to the UCHVCs. We combine careful photometric measurements, a color-magnitude filter, and spatial smoothing techniques to search for stellar overdensities in the g- and i-band images. We also run statistical tests to quantify the likelihood that whatever overdensities we find are real and not chance superpositions of sources. We demonstrate the method by applying it to two data sets: WIYN imaging of Leo P, a UCHVC discovered by ALFALFA and subsequently shown to be a low-mass star-forming dwarf galaxy in the Local Volume, and WIYN imaging of AGC198606, an HI cloud identified by ALFALFA that is near in position and velocity to the Local Group dwarf Leo T. Applying the search method to the Leo P data yields an unambiguous detection (>99% confidence) of the galaxy's stellar population. Applying our method to the AGC198606 imaging yields a possible detection (92% confidence) of an optical counterpart located ~2.5 arc minutes away from the centroid of AGC198606's HI distribution and within the HI disk. We use the optical data to estimate a distance to the stellar counterpart between 373 and 393 kpc, with an absolute magnitude M_i = -4.67+/-0.09. Combining the WIYN data with our previous estimate of the HI mass of AGC198606 from WSRT imaging yields an HI-to-stellar mass ratio of ~45-110.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.