Abstract
Novelty search (NS) is an open-ended evolutionary algorithm that eliminates the need for an explicit objective function. Instead, NS focuses selective pressure on the search for novel solutions. NS has produced intriguing results in specialized domains, but has not been applied in most machine learning areas. The key component of NS is that each individual is described by the behavior it exhibits, and this description is used to determine how novel each individual is with respect to what the search has produced thus far. However, describing individuals in behavioral space is not trivial, and care must be taken to properly define a descriptor for a particular domain. This paper applies NS to a mainstream pattern analysis area: data clustering. To do so, a descriptor of clustering performance is proposed and tested on several problems, and compared with two control methods, Fuzzy C-means and K-means. Results show that NS can effectively be applied to data clustering in some circumstances. NS performance is quite poor on simple or easy problems, achieving basically random performance. Conversely, as the problems get harder NS performs better, and outperforming the control methods. It seems that the search space exploration induced by NS is fully exploited only when generating good solutions is more challenging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.