Abstract
In alternative theories of gravity, designed to produce cosmic acceleration at the current epoch, the growth of large scale structure can be modified. We study the potential of upcoming and future tomographic surveys such as Dark Energy Survey (DES) and Large Synoptic Survey Telescope (LSST), with the aid of cosmic microwave background (CMB) and supernovae data, to detect departures from the growth of cosmic structure expected within general relativity. We employ parametric forms to quantify the potential time- and scale-dependent variation of the effective gravitational constant and the differences between the two Newtonian potentials. We then apply the Fisher matrix technique to forecast the errors on the modified growth parameters from galaxy clustering, weak lensing, CMB, and their cross correlations across multiple photometric redshift bins. We find that even with conservative assumptions about the data, DES will produce nontrivial constraints on modified growth and that LSST will do significantly better.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.