Abstract
The 2-oxa-5-adamantyl carbocation 4 is shown to be a viable intermediate in several S(N)1 substitution reactions. However, attempts to observe the formation of 4 from various precursors by NMR methods (which succeed for the 1-adamantyl cation 5) failed, suggesting that 4 does not survive on longer timescales. DFT calculations suggest that the retro-Prins process (beta-cleavage, Grob fragmentation) to give enantiomeric (1R,5R)- and (1S,5S)-7-methylene-2-oxoniabicyclo[3.3.1]non-2-ene cations 22 is the only realistic unimolecular escape route for 4. With the 6-31G(d) basis set, B3LYP calculation predicts that 4 is only 11 kJ mol(-1) more stable than 22, and the barrier separating 4 and 22 is calculated to be only 15 kJ mol(-1), so rapid equilibration of these species is likely on the laboratory time scale. The implications of this study for the mechanism of the Prins cyclisation are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.