Abstract
Abstract Employing a new machine-learning method, named the hierarchical extreme learning machine (HELM) algorithm, we identified 56 hot subdwarf stars in the first data release (DR1) of the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) survey. The atmospheric parameters of the stars are obtained by fitting the profiles of hydrogen (H) Balmer lines and helium (He) lines with synthetic spectra calculated from non-local thermodynamic equilibrium (NLTE) model atmospheres. Five He-rich hot subdwarf stars were found in our sample with their log (nHe/nH) > −1, while 51 stars are He-poor sdB, sdO and sdOB stars. We also confirmed the two He sequences of hot subdwarf stars found by Edelmann et al. (2003, A&A, 400, 939) in a Teff–log(nHe/nH) diagram. The HELM algorithm works directly on the observed spectroscopy and is able to filter out spectral properties without supplementary photometric data. The results presented in this study demonstrate that the HELM algorithm is a reliable method to search for hot subdwarf stars after suitable training is performed, and it can also be used to search for other objects which have obvious features in their spectra or images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.