Abstract

Undiscovered perovskite materials for applications in capturing solar lights are explored through the implementation of data science. In particular, 15000 perovskite materials data is analyzed where visualization of the data reveals hidden trends and clustering of data. Random forest classification within machine learning is used in order to predict the band gap of perovskite materials where 18 physical descriptors are revealed to determine the band gap. With trained random forest, 9328 perovskite materials with potential for applications in solar cell materials are predicted. The selected Li and Na based perovskite materials within predicted 9328 perovskite materials are evaluated with first principle calculations where 11 undiscovered Li(Na) based perovskite materials fall into the ideal band gap and formation energy ranges for solar cell applications. Thus, the implementation of data science accelerates the discovery of hidden perovskite materials and the approach can be applied to the materials scienc...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.