Abstract

We present results of Gemini spectroscopy and Hubble Space Telescope imaging of the 3C~381 radio galaxy. Possible ionising mechanisms for the Extended Emission-Line Region were studied through state-of-the-art diagnostic analysis employing line-ratios. Photoionisation from the central engine as well as mixed-medium photoionisation models fail in reproducing both the strengths and the behaviour of the highest-excitation lines, such as [NeV]3424, HeII, and [OIII}]5007, which are measured at very large distances from the AGN. Shock-ionisation models provide a better fit to the observation. Expanding shocks with velocities higher than 500 km/s are capable of reaching the observed intensity ratios for lines with different ionisation states and excitation degrees. This model also provide a direct explanation of the mechanical energy input needed to explain the high-velocity line-splitting observed in the velocity field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.