Abstract
We construct models of Einstein and $f(R)$ gravity with two scalar fields, which admit analytical solutions describing time-varying dynamical black holes. Their thermodynamics is investigated in the adiabatic approximation. In addition to the Misner-Sharp-Hernandez quasilocal mass, we provide time-dependent thermodynamical quantities, including the Hawking temperature, Helmholtz free energy, entropy, and thermodynamical energy. The latter does not always coincide with the Misner-Sharp-Hernandez mass at the horizon, although they coincide in the static limit. For Schwarzschild-type (i.e., ${g}_{tt}{g}_{rr}=\ensuremath{-}1$) black holes in Einstein gravity, one of the two scalars is always a ghost with negative kinetic energy. We show that this ghost can be avoided in $f(R)$ gravity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.