Abstract
Activity cliffs are formed by structurally similar compounds having large potency differences. Coordinated activity cliffs evolve when compounds within groups of structural neighbors form multiple cliffs with different partners, giving rise to local networks of cliffs in a data set. Using particle swarm optimization, a machine learning approach, we systematically searched for coordinated activity cliffs in different compound sets. Regardless of the global SAR characteristics of these data sets, coordinated activity cliffs introducing strong local SAR discontinuity were identified in most cases. Compound subsets forming coordinated activity cliffs represent centers of SAR discontinuity and have high SAR information content. Through particle swarm optimization guided by subset discontinuity scoring, compounds forming the largest coordinated activity cliffs can automatically be extracted from large compound data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.