Abstract

The progress rate of a self-adaptive evolution strategy is sub-optimal on ridge functions because the global step-size, denoted σ, becomes too small. On the parabolic ridge we conjecture that σ will stabilize when selection is unbiased towards larger or smaller step-sizes. On the sharp ridge, where the bias in selection is constant, σ will continue to decrease. We show that this is of practical interest because ridges can cause even the best solutions found by self-adaptation to be of little value on ridge problems where spatially close parameters tend to have similar values.KeywordsSearch SpaceEvolution StrategyStrategy ParameterProgress RateObject ParameterThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.