Abstract

Biodesulfurization is a promising alternative for removing sulfur molecules from the polycyclic aromatic sulfur compounds (PASC) found in petroleum. PASC consists of recalcitrant molecules that can degrade fuel quality and cause a range of health and environmental problems. Therefore, identifying bacteria capable of degrading PASC is essential for handling these recalcitrant molecules. Microorganisms in environments exposed to petroleum derivatives have evolved specific enzymatic machinery, such as the 4S pathway associated with the dszABC genes, which are directly linked to sulfur removal and utilization as nutrient sources in the biodesulfurization process. In this study, bacteria were isolated from a bioreactor containing landfarm soil that had been periodically fed with petroleum for 12years, using a medium containing dibenzothiophene (DBT), 4.6-dimethylbenzothiophene, 4-methylbenzothiophene, or benzothiophene. This study aimed to identify microorganisms capable of degrading PASC in such environments. Among the 20 colonies isolated from an inoculum containing DBT as the sole sulfur source, only four isolates exhibited amplification of the dszA gene in the dszABC operon. The production of 2-hydroxybiphenyl (HPB) and a decrease in DBT were detected during the growth curve and resting cell assays. The isolates were identified using 16S rRNA sequencing belonging to the genera Stutzerimonas and Pseudomonas. These isolates demonstrated significant potential for biodesulfurization and/or degradation of PASC. All isolates possessed the potential to be utilized in the biotechnological processes of biodesulfurization and degradation of recalcitrant PASC molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.