Abstract

The time complexity of solving the QUBO problem depends mainly on the number of logical variables in the problem. This paper focuses mainly on finding a system of equations that uniquely defines the Sbox of the AES cipher and simultaneously allows us to obtain the smallest known optimization problem in the QUBO form for the algebraic attack on the AES cipher. A novel method of searching for an efficient system of equations using linear-feedback shift registers has been presented in order to perform that task efficiently. Transformation of the AES cipher to the QUBO problem, using the identified efficient system, is presented in this paper as well. This method allows us to reduce the target QUBO problem for AES-128 by almost 500 logical variables, compared to our previous results, and allows us to perform the algebraic attack using quantum annealing four times faster.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.