Abstract

A novel analysis is performed, incorporating time-of-flight (TOF) information to study the interactions of dark matter (DM) with standard model particles. After supernova (SN) explosions, DM with mass m_{χ}≲O(MeV) in the halo can be boosted by SN neutrinos (SNν) to relativistic speed. The SNν boosted DM (BDM) arrives on Earth with TOF which depends only on m_{χ} and is independent of the cross section. These BDMs can interact with detector targets in low-background experiments and manifest as afterglow events after the arrival of SNν. The characteristic TOF spectra of the BDM events can lead to large background suppression and unique determination of m_{χ}. New cross section constraints on sqrt[σ_{χe}σ_{χν}] are derived from SN1987a in the Large Magellanic Cloud with data from the Kamiokande and Super-Kamiokande experiments. Potential sensitivities for the next galactic SN with Hyper-Kamiokande are projected. This analysis extends the existing bounds on sqrt[σ_{χe}σ_{χν}] over a broad range of r_{χ}=σ_{χν}/σ_{χe}. In particular, the improvement is by 1-3 orders of magnitude for m_{χ}<O(100 keV) for σ_{χe}∼σ_{χν}. Prospects of exploiting TOF information in other astrophysical systems to probe exotic physics with other DM candidates are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.