Abstract

Water electrolysis is an important route to large-scale hydrogen production using renewable energy, in which the oxygen evolution reaction (OER: 2H(2)O → O(2) + 4H(+) + 4e(-)) causes the largest energy loss in traditional electrocatalysts involving Ru-Ir mixed oxides. Following our previous mechanistic studies on the OER on RuO(2)(110) (J. Am. Chem. Soc. 2010, 132, 18214), this work aims to provide further insight into the key parameters relevant to the activity of OER catalysts by investigating a group of rutile-type binary metal oxides, including RuNiO(2), RuCoO(2), RuRhO(2), RuIrO(2) and OsIrO(2). Two key aspects are focused on, namely the surface O coverage at the relevant potential conditions and the kinetics of H(2)O activation on the O-covered surfaces. The O coverage for all the oxides investigated here is found to be 1 ML at the concerned potential (1.23 V) with all the exposed metal cations being covered by terminal O atoms. The calculated free energy barrier for the H(2)O dissociation on the O covered surfaces varies significantly on different surfaces. The highest OER activity occurs at RuCoO(2) and RuNiO(2) oxides with a predicted activity about 500 times higher than pure RuO(2). On these oxides, the surface bridging O near the terminal O atom has a high activity for accepting the H during H(2)O splitting. It is concluded that while the differential adsorption energy of the terminal O atom influences the OER activity to the largest extent, the OER activity can still be tuned by modifying the electronic structure of surface bridging O.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.