Abstract

The study focuses on laboratory testing of carbon-dioxide adsorption. It compares three methods used to determine the capacity of the adsorbents proposed for CO2 capture. The tests have been performed on two samples, namely natural clinoptilolite and a 13X molecular sieve. Two methods were dynamic and one was static. The first dynamic method evaluated the capacity based on the change in CO2 volume fraction before and after a fixed-bed adsorber. For the same purpose, the second dynamic method used a gravimetric procedure. The static method detected a change in pressure during CO2 adsorption. The capacities determined for carbon-dioxide mole fractions of 5, 10, 13 and 20% at temperatures of 30 and 40 °C at atmospheric pressure were compared. The apparatus with a fixed-bed adsorber made it possible to perform tests also for overpressures of 2 and 5 bar and lower temperatures. The capacity obtained on the three apparatuses showed good agreement. The maximum capacity (3.32 mmol g−1) was determined for the 13X sample at 10 °C and a partial CO2 pressure of 120 kPa and, conversely, the lowest (0.12 mmol g−1) for clinoptilolite at 40 °C and a partial CO2 pressure of 5 kPa. There was no significant difference in capacity standard deviations between the apparatus (0.014–0.036 mmol g−1). The fixed-bed apparatus required one to three orders of magnitude more gas for the experiment and was more challenging to operate and evaluate the data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.