Abstract

In complex systems design, multidisciplinary constraints are imposed by stakeholders. Engineers need to search feasible design space for a given problem before searching for the optimum design solution. Searching feasible design space can be modeled as a constraint satisfaction problem (CSP). By introducing logical quantifiers, CSP is extended to quantified constraint satisfaction problem (QCSP) so that more semantics and design intent can be captured. This paper presents a new approach to formulate searching design problems as QCSPs in a continuous design space based on generalized interval, and to numerically solve them for feasible solution sets, where the lower and upper bounds of design variables are specified. The approach includes two major components. One is a semantic analysis which evaluates the logic relationship of variables in generalized interval constraints based on Kaucher arithmetic, and the other is a branch-and-prune algorithm that takes advantage of the logic interpretation. The new approach is generic and can be applied to the case when variables occur multiple times, which is not available in other QCSP solving methods. A hybrid stratified Monte Carlo method that combines interval arithmetic with Monte Carlo sampling is also developed to verify the correctness of the QCSP solution sets obtained by the branch-and-prune algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call