Abstract

Seven years after the first direct detection of gravitational waves, from the collision of two black holes, the field of gravitational wave astronomy is firmly established. A first detection of continuous gravitational waves from rapidly-spinning neutron stars could be the field’s next big discovery. I review the last twenty years of efforts to detect continuous gravitational waves using the LIGO and Virgo gravitational wave detectors. I summarise the model of a continuous gravitational wave signal, the challenges to finding such signals in noisy data, and the data analysis algorithms that have been developed to address those challenges. I present a quantitative analysis of 297 continuous wave searches from 80 papers, published from 2003 to 2022, and compare their sensitivities and coverage of the signal model parameter space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.