Abstract
The goal of this paper is to propose, evaluate, and compare four search strategies for ensemble feature selection, and to consider their application to medical diagnostics, with a focus on the problem of the classification of acute abdominal pain. Ensembles of learnt models constitute one of the main current directions in machine learning and data mining. Ensembles allow us to get higher accuracy, sensitivity, and specificity, which are often not achievable with single models. One technique, which proved to be effective for ensemble construction, is feature selection. Lately, several strategies for ensemble feature selection were proposed, including random subspacing, hill-climbing-based search, and genetic search. In this paper, we propose two new sequential-search-based strategies for ensemble feature selection, and evaluate them, constructing ensembles of simple Bayesian classifiers for the problem of acute abdominal pain classification. We compare the search strategies with regard to achieved accuracy, sensitivity, specificity, and the average number of features they select.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.