Abstract

The Linear Ordering Problem (LOP) is an NP-hard combinatorial optimization problem that arises in a variety of applications and several algorithmic approaches to its solution have been proposed. However, few details are known about the search space characteristics of LOP instances. In this article we develop a detailed study of the LOP search space. The results indicate that, in general, LOP instances show high fitness-distance correlations and large autocorrelation length but also that there exist significant differences between real-life and randomly generated LOP instances. Because of the limited size of real-world instances, we propose new, randomly generated large real-life like LOP instances which appear to be much harder than other randomly generated instances. Additionally, we propose a rather straightforward Iterated Local Search algorithm, which shows better performance than several state-of-the-art heuristics.KeywordsLocal SearchGlobal OptimumLocal Search AlgorithmMatrix EntryScatter SearchThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.