Abstract

We consider the problem of fault-tolerant parallel search on an infinite line by [Formula: see text] robots. Starting from the origin, the robots are required to find a target at an unknown location. The robots can move with maximum speed [Formula: see text] and can communicate wirelessly among themselves. However, among the [Formula: see text] robots, there are [Formula: see text] robots that exhibit byzantine faults. A faulty robot can fail to report the target even after reaching it, or it can make malicious claims about having found the target when in fact it has not. Given the presence of such faulty robots, the search for the target can only be concluded when the non-faulty robots have sufficient evidence that the target has been found. We aim to design algorithms that minimize the value of [Formula: see text], the time to find a target at a (unknown) distance [Formula: see text] from the origin by [Formula: see text] robots among which [Formula: see text] are faulty. We give several different algorithms whose running time depends on the ratio [Formula: see text], the density of faulty robots, and also prove lower bounds. Our algorithms are optimal for some densities of faulty robots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.