Abstract

We have broadened the utility of the SEQUEST computer algorithms to permit correlation of uninterpreted high-energy collision-induced dissociation spectra of peptides with all sequences in a database. SEQUEST now allows for the additional fragment ion types observed under high-energy conditions. We analyzed spectra from peptides isolated following trypsin digestion of 13 proteins. SEQUEST ranked the correct sequence first for 90% (18/20) of the spectra in searches of the OWL database, without constraint by enzyme cleavage specificity or species of origin. All false-positives were flagged by the scoring system. SEQUEST searches databases for sequences that correspond to the precursor ion mass ±0.5 u. Preliminary ranking of the top 500 candidates is done by calculation of fragment ion masses for each sequence, and comparison to the measured ion masses on the basis of ion series continuity, summed ion intensity, and immonium ion presence. Final ranking is done by construction of model spectra for the 500 candidates and constructing/performing of a cross-correlation analysis with the actual spectrum. Given the need to relate mounting genome sequence information with corresponding suites of proteins that comprise the cellular molecular machinery, tandem mass spectrometry appears destined to play the leading role in accelerating protein identification on the large scale required.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call