Abstract

The search behavior of the grazing stream insect Baetis tricaudatus (Ephemeroptera: Baetidae) was examined in field and laboratory experiments. Regardless of food abundance in experimental habitats, nymphs spent significantly more time in food patches than predicted if they had moved randomly with respect to patches. A significant reduction in movement rate within patches relative to movement rate between patches largely accounted for these results. The movement pattern within patches was highly systematic and in agreement with predictions of optimal foraging theory since food was uniformly distributed within patches. Between-patch search movements were affected by food abundance in the most recently grazed patch. Search intensity after departure from a patch was positively related to food abundance in the patch while movement rate after patch departure was inversely related to patch food level. These effects produced between-patch movement patterns that were suboptimal in the experimental habitats because they resulted in revisitation of previously depleted patches. However, differences between experimental and natural habitats in the spatial occurrence of patch types suggest that Baetis between-patch search behavior may be adaptive in natural habitats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.