Abstract

The existence of even the simplest magnetized wormholes may lead to observable consequences. In the case where both the wormhole and the magnetic field around its mouths are static and spherically symmetric, and gas in the region near the wormhole falls radially into it, the former’s spectrum contains bright cyclotron or synchrotron lines due to the interaction of charged plasma particles with the magnetic field. At the same time, due to spherical symmetry, the radiation is non-polarized. The emission of this just-described exotic type (non-thermal, but non-polarized) may be a wormhole signature. Also, in this scenario, the formation of an accretion disk is still quite possible at some distance from the wormhole, but a monopole magnetic field could complicate this process and lead to the emergence of asymmetrical and one-sided relativistic jets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call