Abstract

A model-independent search for three-jet hadronic resonance production in pp collisions at a center-of-mass energy of 7 TeV has been conducted by the CMS Collaboration at the LHC, using a data sample corresponding to an integrated luminosity of 35 inverse picobarns. Events with high jet multiplicity and a large scalar sum of jet transverse momenta are analyzed. The number of expected standard model background events is found to be in good agreement with the observed events. Limits are set on a model describing the production of R-parity-violating supersymmetric gluino pairs, and gluino masses in the range of 200 to 280 GeV/c^2 are excluded at a 95% confidence level for the first time.

Highlights

  • A search for three-jet hadronic resonance production in pp collisions at a center-of-mass energy of 7 TeV has been conducted by the Compact Muon Solenoid (CMS) Collaboration at the large hadron collider (LHC), using a data sample corresponding to an integrated luminosity of 35 pbÀ1

  • The number of expected standard model background events is found to be in good agreement with the observed events

  • Limits on the cross section times branching ratio are set in a model of gluino pair production with an R-parity-violating decay to three quarks, and the data rule out such particles within the mass range of 200 to 280 GeV=c2

Read more

Summary

Introduction

A search for three-jet hadronic resonance production in pp collisions at a center-of-mass energy of 7 TeV has been conducted by the CMS Collaboration at the LHC, using a data sample corresponding to an integrated luminosity of 35 pbÀ1. Limits on the cross section times branching ratio are set in a model of gluino pair production with an R-parity-violating decay to three quarks, and the data rule out such particles within the mass range of 200 to 280 GeV=c2.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.