Abstract

In this dissertation, results from a search for the Standard Model (SM) Higgs boson is shown. The SM is the theoretical framework which describes particles of matter and force carrier gauge bosons. To solve the mass problem in the SM, the Higgs mechanism was introduced in 1963. The Higgs mechanism causes an electroweak symmetry breaking and a new massive scalar boson was postulated. This particle is the Higgs boson. A search for the Higgs boson has been ongoing at the Tevatron where protons and antiprotons were allowed to collide at a center-of-mass energy of 1.96 TeV. For a low mass Higgs, that is a Higgs with a mass lower than 135 GeV, the dominant decay mode is Higgs to a pair of b-quarks (H →b $\bar{b}$ ). This work concentrated on a Higgs whose mass is in the range of 100 150 GeV, with a W vector boson produced with the Higgs boson. The final state chosen is the one which contains a lepton a neutrino and a pair of b-quarks. This study used data provided by the DZERO experiment. Results presented here are the outcome of analyzing 5.3 fb-1 of data from RunII period. The analysis used different techniques to increase the sensitivity of the study. Data were subdivided based on lepton flavor, number of jets in sample, jets identified as b-jets and dates of collected data. A multivariate analysis technique based on boosted decision trees were used to separate signal from background processes, physical and instrumental. A good agreement between data and simulated events was observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call