Abstract

Whether the evolution of natural river networks pursues a certain optimal state has been a most intriguing and fundamental question. There have been many optimality hypotheses proposed but it has yet to be proved which of these best serves as a quantitative signature of river network development. Here, this fundamental question is investigated for the five hypotheses of "minimum total energy expenditure," "minimum total energy dissipation rate," "minimum total stream power," "minimum global energy expenditure rate," and "minimum topological energy." Using simple example landscapes, I examined whether any of these hypotheses pursues both the treelike river network formation and the concave stream longitudinal profile, the two characteristic patterns of natural landscapes. It is found that none of these hypotheses captures both patterns under the steady-state condition where the balance between tectonic uplift and sediment loss is satisfied. These findings are further verified through simulations of landscapes that satisfy given optimality criteria using an optimization method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.