Abstract

Abstract Linking meteorites to source regions in the main asteroid belt is important for understanding the conditions under which their parent bodies formed. Ordinary chondrites are the most abundant class of meteorites on Earth, totaling 86% of all collected samples. Some S-type asteroids/families have been proposed as sources for the three different (H, L, and LL) types of ordinary chondrites with Hebe, Agnia, Merxia, and Koronis families being the source for H chondrites, Gefion for H/L chondrites, and Flora family for LL chondrites. However, the composition and meteorite affinity of several large S-type main belt asteroids remains unconstrained leaving the possibility of additional source regions for ordinary chondrite meteorites. Here we investigate the surface composition of three large S-type asteroids, (3) Juno, (7) Iris, and (25) Phocaea, using their near-infrared spectra (0.7–2.55 μm) to identify the parent body of the H chondrites. We use a Bayesian inference model to confirm the meteorite analogs of the three asteroids. Based on our Bayes classifier we find the following analogs and probabilities: Juno is likely H chondrite (89%), Iris is likely LL chondrite (97.5%), and Phocaea is likely H chondrite (98.6%). While Phocaea has the highest probability of being an H chondrite, it is dynamically unlikely to deliver material to near-Earth space. While Juno has spectral properties similar to H chondrites, its family is unlikely to produce sizeable H-chondrite-type near-Earth objects (NEOs). If Juno is the primary source of H chondrite meteorites, it suggests that an additional source is needed to explain the H-chondrite-type NEOs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call