Abstract

Ultra-dense deuterium D(−1) is expected to be both a superfluid and a superconductor as shown by recent theoretical research. Condensed D(−1) can be deposited on surfaces by a source which produces a stream of clusters. A magnetic field strongly influences the type of material formed. Very little of D(−1) and of the form D(1), which is strongly coupled to D(−1), exists on the magnet surface or within several mm from the magnet surface. Even the formation of D(−1) on the source emitter is strongly influenced by a magnetic field, with a critical field strength in the range 0.03–0.07 T. Higher excitation levels D(2) and D(3) dominate in a magnetic field. The excitation level D(2) is now observed for the first time. The removal of D(−1) and D(1) in strong magnetic fields is proposed to be due to a Meissner effect in long D(−1) clusters by large-orbit electron motion. The lifting of long D(−1) clusters above the magnet surface is slightly larger than expected, possibly due to the coupling to D(1). The previously reported oscillation between D(−1) and D(1) in an electric field is proposed to be due to destruction of D(−1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call