Abstract

We have systematically explored and investigated the geometrical structures, stability, growth pattern, bonding character, and potential energy surface (PES) of the possible isomers of each cluster for planar B(n)P (n = 1 ∼ 7) at the CCSD(T)/6-311+;G(d)//B3LYP/6-311+G(d) level. A large number of planar structures for the possible isomers of B(n)P (n = 1 ∼ 7) and transition states are located. Isomers 1a ∼ 7a of B(n)P are the lowest-energy structures and 2a, 4a, as well as 6a are more stable than their neighbors. For the lowest-energy structures (1a ∼ 7a) of B(n)P, P atom lies at the apex and tends to form two B-P bonds with boron atoms. They exhibit planar zigzag growth feature or approximately spherical-like growth pattern. Results from molecular orbital analysis demonstrate that the formation of the delocalized π MOs and the σ-radial and σ-tangential MOs plays a critical role in stabilizing the structures of lowest-energy isomers (2a ∼ 7a) of B(n)P. Importantly, isomers 3a, 3c, 3d, 4a, 4b, 5b, and 5c of B(n)P are stable both thermodynamically and kinetically at the CCSD(T)/6-311+G(d)// B3LYP/6-311+G(d) level and detectable in laboratory, which is valuable for further experimental studies of B(n)P.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call