Abstract

The GERmanium Detector Array (GERDA) experiment, located at the Gran Sasso underground laboratory in Italy, is built for the search of $0\nu\beta\beta$ decay in $^{76}$Ge. GERDA operates bare high purity germanium detectors submersed in liquid Argon (LAr). Phase I of the experiment was completed reaching an exposure of about 21 kg$\cdot$yr with a background level of $10^{-2}$ cts/(ke V $\cdot$ kg $\cdot$ yr). GERDA Phase I set a limit on the $0\nu\beta\beta$ decay of $^{76}$Ge of $T_{1/2}^{0\nu} > 2.1 \cdot 10^{25}$ yr. In Phase II 35 kg of germanium detectors enriched in $^{76}$Ge are operated to reach an exposure of 100 kg$\cdot$yr. The design goal is to reduce the background by one order of magnitude to reach the sensitivity for $T_{1/2}^{0\nu} = \mathcal{O} (10^{26} )$ yr. The Phase II setup comprises thirty newly produced Broad Energy Germanium (BEGe) detectors. They contribute to the background reduction with better energy resolution and enhanced pulse shape discrimination. To achieve the necessary background reduction, the setup was complemented with LAr veto. The hardware upgrade for Phase II was finished and all detectors were deployed in December 2015. We present the first results of Phase II with 10.8 kg$\cdot$yr exposure reached in June 2016.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.