Abstract

In an ongoing effort to identify and study high-mass protostellar candidates we have observed in various tracers a sample of 235 sources selected from the IRAS Point Source Catalog, mostly with dec < -30 deg, with the SEST antenna at millimeter wavelengths. The sample contains 142 Low sources and 93 High, which are believed to be in different evolutionary stages. Both sub-samples have been studied in detail by comparing their physical properties and morphologies. Massive dust clumps have been detected in all but 8 regions, with usually more than one clump per region. The dust emission shows a variety of complex morphologies, sometimes with multiple clumps forming filaments or clusters. The mean clump has a linear size of ~0.5 pc, a mass of ~320 Msolar for a dust temperature Td=30 K, an H_2 density of 9.5E5 cm-3, and a surface density of 0.4 g cm-2. The median values are 0.4 pc, 102 Msolar, 4E4 cm-3, and 0.14 g cm-2, respectively. The mean value of the luminosity-to-mass ratio, L/M ~99 Lsolar/Msolar, suggests that the sources are in a young, pre-ultracompact HII phase. We have compared the millimeter continuum maps with images of the mid-IR MSX emission, and have discovered 95 massive millimeter clumps non-MSX emitters, either diffuse or point-like, that are potential prestellar or precluster cores. The physical properties of these clumps are similar to those of the others, apart from the mass that is ~3 times lower than for clumps with MSX counterpart. Such a difference could be due to the potential prestellar clumps having a lower dust temperature. The mass spectrum of the clumps with masses above M ~100 Msolar is best fitted with a power-law dN/dM proportional to M-alpha with alpha=2.1, consistent with the Salpeter (1955) stellar IMF, with alpha=2.35.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call