Abstract
A search for invisible decays of the Higgs boson produced via vector boson fusion (VBF) has been performed with 101 fb−1 of proton-proton collisions delivered by the LHC at s=13 TeV and collected by the CMS detector in 2017 and 2018. The sensitivity to the VBF production mechanism is enhanced by constructing two analysis categories, one based on missing transverse momentum and a second based on the properties of jets. In addition to control regions with Z and W boson candidate events, a highly populated control region, based on the production of a photon in association with jets, is used to constrain the dominant irreducible background from the invisible decay of a Z boson produced in association with jets. The results of this search are combined with all previous measurements in the VBF topology, based on data collected in 2012 (at s=8 TeV), 2015, and 2016, corresponding to integrated luminosities of 19.7, 2.3, and 36.3 fb−1, respectively. The observed (expected) upper limit on the invisible branching fraction of the Higgs boson is found to be 0.18 (0.10) at the 95% confidence level, assuming the standard model production cross section. The results are also interpreted in the context of Higgs-portal models.6 MoreReceived 27 January 2022Accepted 14 March 2022DOI:https://doi.org/10.1103/PhysRevD.105.092007Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.© 2022 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Physical SystemsHiggs bosonsW & Z bosonsTechniquesHadron collidersParticles & Fields
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.