Abstract
The existence of new heavy neutral massive boson Z′ is a feature of many extensions of Standard Model models as the two-Higgs-doublet model (2HDM), the Hidden Abelian Higgs Model (HAHM), Left-Right Symmetric Model (LRSM), Sequential Standard Model (SSM) and Baryon number minus Lepton number Model (B-L). In the present work we search for two high energy electrons produced from decayingheavy neutral massive boson in the events produced in proton-proton collisions at LHC and can be detected by CMS detector. We used the data which is produced from proton-proton collisions by Monte Carlo events generator for different energies at LHC, then we use the angular distribution, invariant mass, combined transverse momentum and combined rapidity distributions for the two high energy electrons produced from decay channel to detect thesignal. B-L extension of the SM model predicts the existence of aheavy neutral massive boson at high energies. From our results which we had simulated using MC programs forin the B-L extension of standard model, we predict a possible existence of new gaugeat LHC in the mass range 1 TeV to 1.5 TeV via electrons identification of the two high energy electrons by CMS detector.
Highlights
The Standard Model (SM) of particles physics provides a good explanation for most known particles but there are several points need an answer, dark matter, dark energy, CP violation to explain the baryonic matter-antimatter asymmetry of the universe and neutrino oscillations
The existence of new heavy neutral massive boson Z′ is a feature of many extensions of Standard Model models as the two-Higgs-doublet model (2HDM), the Hidden Abelian Higgs Model (HAHM), Left-Right Symmetric Model (LRSM), Sequential Standard Model (SSM) and Baryon number minus Lepton number Model (B-L)
B-L model is an extension for the SM which is based on the gauge group [1,2,3]
Summary
The Standard Model (SM) of particles physics provides a good explanation for most known particles but there are several points need an answer, dark matter, dark energy, CP violation to explain the baryonic matter-antimatter asymmetry of the universe and neutrino oscillations. It can lead to a very interesting phenomenology which is different from the SM results and it can be tested at the LHC. There are many models which contain extra gauge bosons These models can be classified into two categories depending on whether or not they arise in a GUT scenario. In some of these models, Z and SM Z are not true mass due to mixing. This mixing induces the couplings between the extra Z boson and the SM fermions. We present the production of ZB L at LHC which includes production cross section, different branching ratios and total width. We present the properties of ZB L which include Luminosity, Significance, Transverse momentum and Rapidity
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.